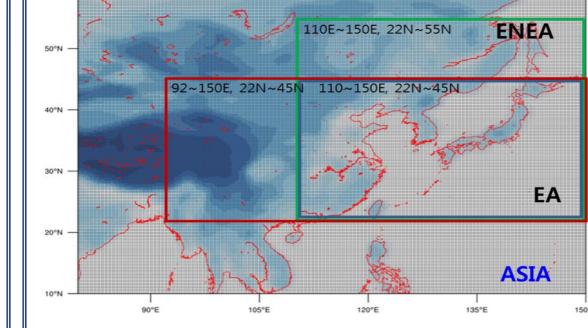
고해상도 ECMWF 재분석자료에서의 동북아시아 상공 대기 구조

김기영¹, 김유정 ¹, 문병권 ²

¹(주)포디솔루션, ²전북대학교 과학교육학부/융합과학연구소

2014년 한국기상학회 가을 학술대회 발표

kiyoungkim3@naver.com


I. 서 론

◆연구개요

- •대기의 연직구조는 항공우주공학 연구에서 중요한 요소임.
- 일반적으로 1976년 정립된 미국 표준 대기(US Standard Atmosphere, Sissenwine et al, 1976)을 따르고 있으나, 이것은 전지구의 대푯값으로 한반도 지역 특성을 반영하기에는 제한적
- 2011년 유럽중기예보센터(ECMWF) 재분석자료를 이용하여 한반도 부근 에서 대기 구조를 파악하기 위한 연구(김기영외, 2011)를 진행한바 있음
- •본 연구에서는 2011년도 선행연구(김기영외, 2011)을 보강하여, 0.25도 간격의 고해상도 ECMWF 재분석자료를 이용하여 동북아시아 영역에서의 대기 연직구조를 살펴봄

II. ECMWF 재분석자료 및 전처리자료

◆분석 영역

◆자료 수집 및 전처리

- 연구에 사용된 재분석자료는 유럽중기예보센 터 (ECMWF) 재분석자료
- ECMWF 홈페이지 (http://apps.ecmwf.int/datasets)에서 재분 석자료 수신
- 등기압면 자료를 1km 간격 고도면으로 변환 하였으며, 분석은 그림 1의 EA와 ENEA 지역

◆ ECMWF 재분석자료와 전처리자료의 특징

✔영역: ENEA영역(110E~150E,22N~55N)

✓ 영역: ENEA영역(110E~150E, 22N~55N)

가. 시계열 분석

✔연도: 1979년~2013년

나. 계절 분석

(a) 겨울(1월)

(a) 겨울(1월)

(a) 겨울(1월)

다. 기간 분석

✓월 : 전체(1월~12월)

풍속(m/s)

✔ 영역: ENEA영역(110E~150E,22N~55N)

& EA영역(110E~150E,22N~45N)

라. 영역 분석

(a) ENEA영역

✔연도 : 1979년~2013년

풍속(m/s)

(a) 최근5년

✓ 연도 : 1979년~2013년

	ECMWF-interim 재분석자료 정보	ECMWF-interim 재분석 전처리자료 정보
연직층	등기압면 37층 (1000 975 950 925 900 875 850 825 800 775 750 700 650 600 550 500 450 400 350 300 250 225 200 175 150 125 100 70 50 30 20 10 7 5 3 2 1)	등기압면 37층 → 등고도면 40km (1km 간격)
수평분해능 / 영역	0.25° × 0.25° / 80E~150E, 10N~60N	
자료기간	1979년 1월 ~ 2013년 12월 (35년간)	
시간간격	6시간 간격 (00, 06, 12, 18 UTC)	

Ⅲ-2. 풍속(m/s)

그림 13. 35년 평균 일별 동북아시아 영역 평균 풍속

그림 14. 동서평균 된 위도-고도 단면 평균 풍속 분포

그림 15. 고도12km의 평균 풍속 위도-경도 공간장

그림 16. 계절에 따른 풍속 연직 분포

✔연도 : 최근5년(2009년~2013년) & 과거5년(1979년~1983년)

그림 17. 기간에 따른 풍속 연직 분포

그림 18. 영역에 따른 풍속 연직 분포

✔영역: ENEA영역(110E~150E, 22N~55N)

(b) 여름(7월)

풍속(m/s)

(b) 기간차이(최근5년-과거5년)

✓월 : 전체(1월~12월)

(b) 영역차이(ENEA영역-EA영역)

🖚 평균

🗕 평균

→ 상위10%

🗕 평균 🖚 최대

상위10%

✓계절:겨울(1월), 여름(7월)

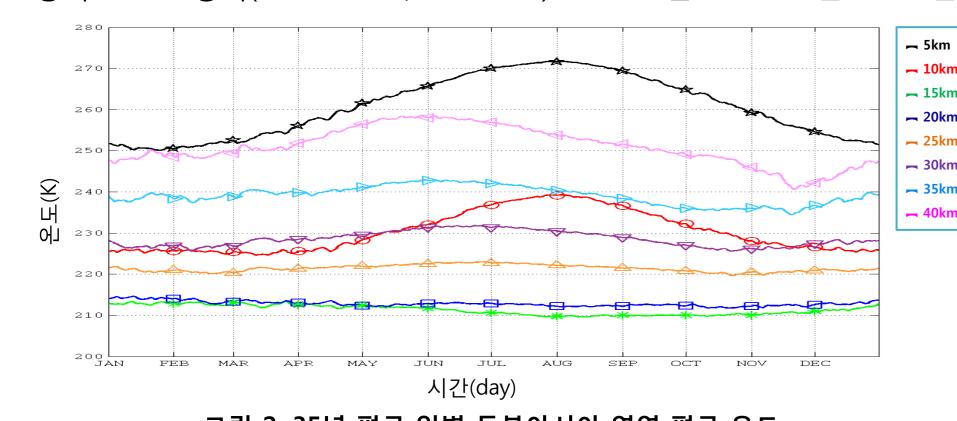
(b) 여름(7월)

(b) 여름(7월)

III. 분석

◆분석방법

- 가. 시계열 분석: 고도별(5km, 10km, 15km, 20km, 25km, 30km, 35km, 40km) 계절 변동 파악
- **나. 계절 분석 :** 겨울(1월)과 여름(7월)에 대한 비교 분석
- **동서평균 된 위도-고도 단면 :** 상층 연직구조 파악
- 빈도 값 : 온도(평균, 상·하위10%), 풍속(평균) ■ **위도-경도 공간장 :** 임의의 고도의 수평 공간구조 파악
 - 빈도 값 : 온도(평균, 상·하위10%), 풍속(평균)
- **연직 분포:** 고도별 빈도 값을 찾아 연결하여 대기의 연직구조 파악 - 빈도 값 : 온도(평균, 최대, 최소, 상·하위10%),
 - 풍속(평균, 최대, 상위10%)
- **다. 기간 분석 :** 최근5년(2009년~2013년)과
 - 과거5년(1979년~1983년)에 대한 비교 분석
 - **연직 분포:** 고도별 빈도 값을 찾아 연결하여 대기의 연직구조 파악 - 빈도 값 : 온도(평균, 최대, 최소, 상·하위10%),
 - 풍속(평균, 최대, 상위10%) - 기간 차이 : 최근5년과 과거5년의 연직 분포 값의 차이
- 라. 영역 분석: ENEA영역(110E~150E, 22N~55N)과
 - EA영역(110E~150E, 22N~45N)에 대한 비교 분석
 - **연직 분포:** 고도별 빈도 값을 찾아 연결하여 대기의 연직구조 파악 - 빈도 값 : 온도(평균, 최대, 최소, 상·하위10%), 풍속(평균, 최대, 상위10%)
 - 기간 차이 : 최근5년과 과거5년의 연직 분포 값의 차이


: ECMWF 재분석 자료의 평균 온도 연직 분포와 비교

마. 'US Standard Atmosphere, 1976' 과 비교

III-1. 온도(K) (1/2)

가. 시계열 분석

✔연도: 1979년~2013년 ✓ 영역: ENEA영역(110E~150E,22N~55N)

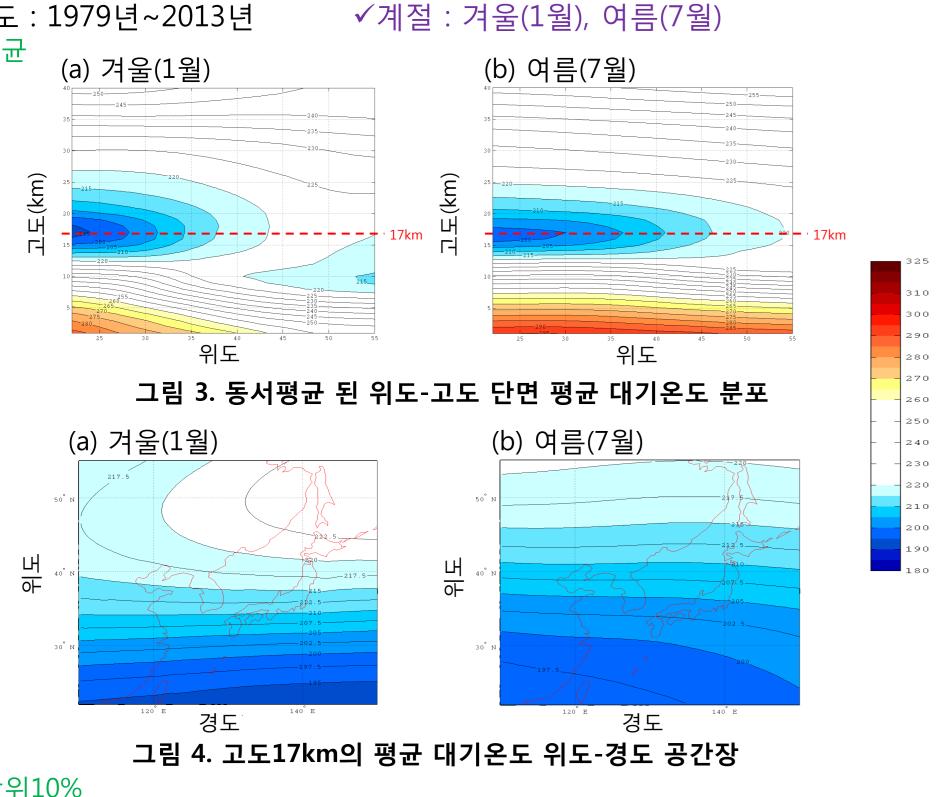


그림 2. 35년 평균 일별 동북아시아 영역 평균 온도

나. 계절 분석

✔영역: ENEA영역(110E~150E, 22N~55N)

✔연도: 1979년~2013년

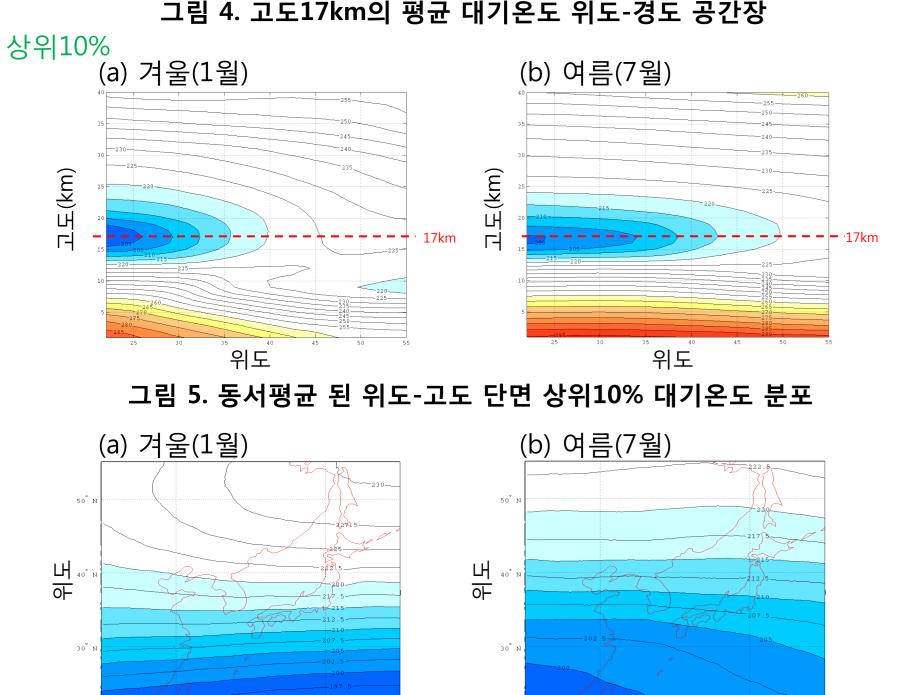


그림 6. 고도17km의 상위10% 대기온도 위도-경도 공간장

- 그림 1. 대기구조 분석 영역
- 에 대해서 주로 분석

(a) 겨울(1월)

(b) 여름(7월)

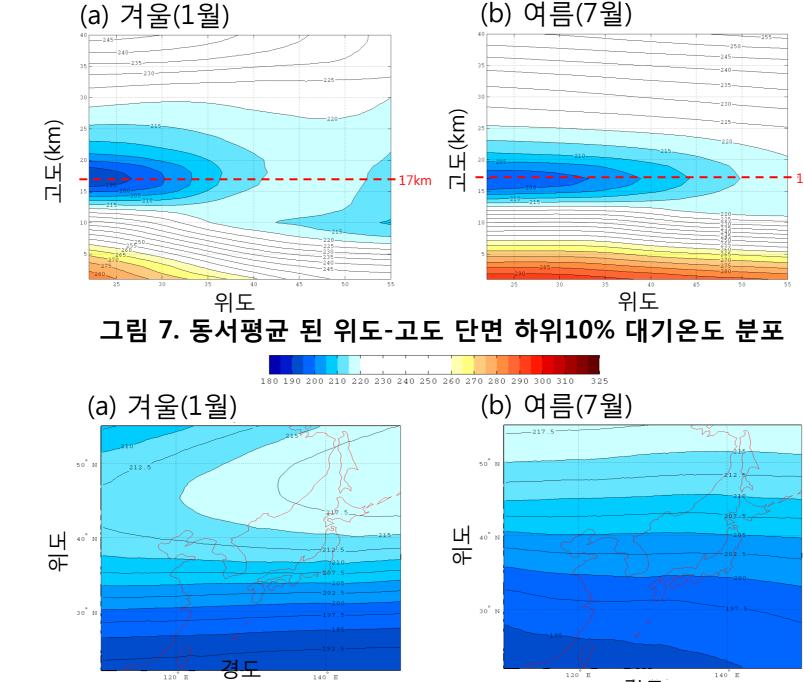
온도(K)

그림 9. 계절에 따른

온도 연직 분포

✓월 : 전체(1월~12월)

III-1. 온도[K] (²/₂)


√계절 : 겨울(1월), 여름(7월)

나. 계절 분석

✔연도: 1979년~2013년

하위10%

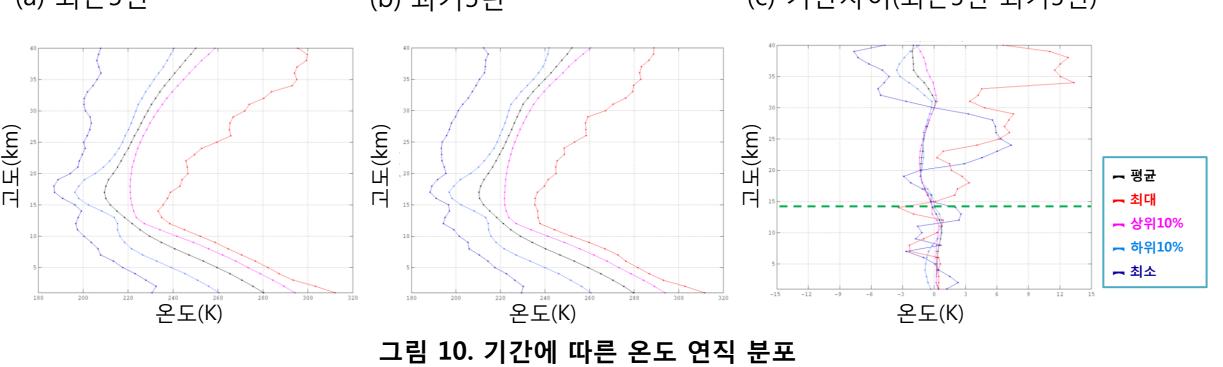
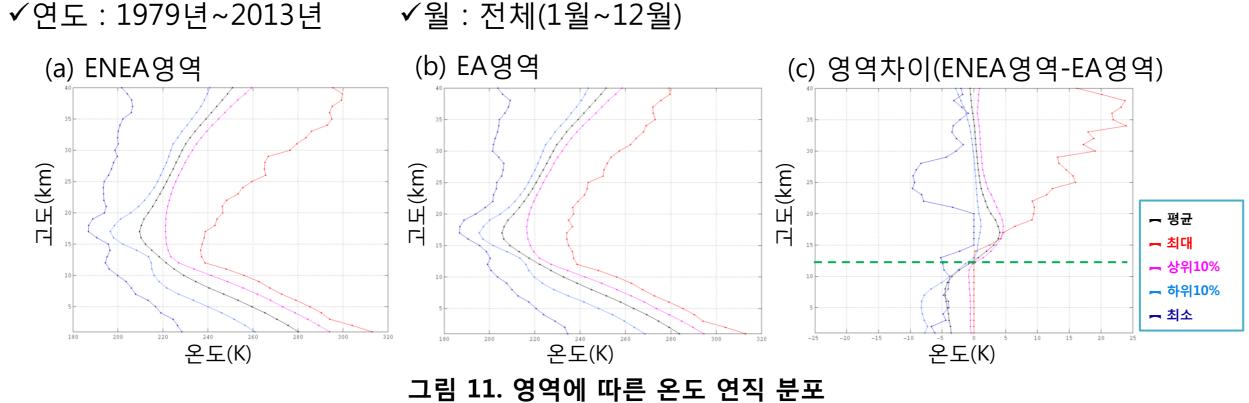

✔영역: ENEA영역(110E~150E, 22N~55N)

그림 8. 고도17km의 하위10% 대기온도 위도-경도 공간장 다. 기간 분석


✔영역: ENEA영역(110E~150E, 22N~55N) ✔연도: 최근5년(2009년~2013년) & 과거5년(1979년~1983년)

(a) 최근5년 (c) 기간차이(최근5년-과거5년) (b) 과거5년

라. 영역 분석

✔영역: ENEA영역(110E~150E,22N~55N) & EA영역(110E~150E,22N~45N)

마. 'US standard Atmosphere, 1976' 과 비교

➤ ECMWF 재분석 자료의 평균 온도 연직 분포와 비교

✔영역: ENEA영역(110E~150E,22N~55N) ✔연도: 1979년~2013년 ✔월: 전체(1월~12월)

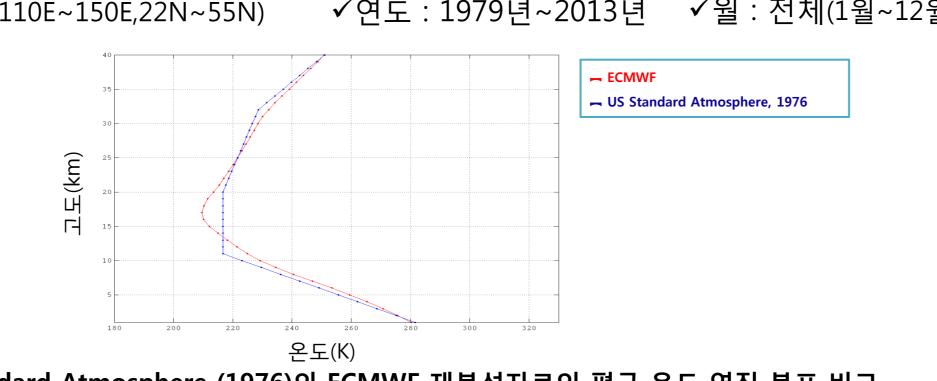


그림 12. US Standard Atmosphere (1976)와 ECMWF 재분석자료의 평균 온도 연직 분포 비교

IV. 요약

- ▶ 온도의 시계열 분석을 보면 고도 15km에서 온도가 가장 낮으며, 계절 변화가 약하지만 8월에 가장 낮은 온도이고 1월에 높은 온도이며, 고도 20km에서는 온도의 연변화가 없음
- ▶ 계절분석, 기간분석, 영역분석에서 차이를 계산하면 온도와 풍속 모두 최대, 최소 값은 변동성이 크게 나타나기 때문에 안정적인 값을 위해 평균과 상·하위 10% 값으로 분석함
- 온도의 계절분석에서 동서평균 된 위도-고도 단면 대기온도 분포를 보면 겨울은 여름에 비해 고도 25km 이하로는 위도에 따라 온도 편차가 더 크게 나타나고, 최소온도가 나타나는 고도 17km의 위도-경도 공간장을 보면 저위도에서 온도가 낮게 나타나고 고위도에서 온도가 높게 나타나며, 겨울에 남북으로의 온도 편차가 더 크게 나타남
- 온도의 계절분석에서 연직 분포를 보면 겨울에는 온도 편차가 크고 여름에는 온도 편차가 작음
- ▶ 온도의 기간분석에서 최근5년과 과거5년의 온도 연직 분포의 차이를 보면 최근5년이 과거5년에 비해
- 고도 14km 이상에서 평균과 상·하위10%의 온도가 떨어졌고, 고도 15km 미만에서는 평균과 상위10%의 온도는 상승했지만 하위10%의 경우 고도 8km 이하에서 온도가 떨어짐
- ▶ 온도의 영역분석에서 ENEA영역과 EA영역의 온도 연직 분포의 차이를 보면 ENEA영역이 고도 13km~35km 사이에서는 온도가 높고 고도 12km 이하는 온도가 낮음
- 🕨 'US Standard Atmosphere, 1976' 과 평균 온도 연직 분포를 비교했을 때 연직 분포 경향은 비슷하나 'US Standard Atmosphere, 1976' 은 고도 11km~20km 사이의 값이 모두 동일하여 <mark>온도의</mark> 연직 분포에서 최소 값과 그 값의 고도를 나타내지 못함
- ▶ 풍속의 시계열 분석을 보면 고도 10km~15km에서 풍속이 크고, 고도 20km 이상에서는 6월~9월에 풍속이 크며 고도 20km에서는 다른 고도에 비해 풍속의 연변화가 작음
- ▶ 풍속의 계절분석에서 동서평균 된 위도-고도 단면 풍속 분포를 보면 여름에는 북위 40N 부근에서 제트류가 형성되고, 겨울엔 북위 30~35N 부근에서 제트류가 강하게 형성되며, 최고 풍속이 나타나는 고도 12km 위도-경도 공간장을 보면 남북으로의 풍속 편차가 크게 나타남
- 풍속의 계절분석에서 풍속 연직 분포를 보면 겨울에 풍속 편차가 크고 여름에는 풍속 편차가 작음
- ▶ 풍속의 기간분석에서 최근5년과 과거5년의 연직 분포의 차이를 보면 최근5년이 과거5년에 비해 고도 13km 이하에서 평균풍속이 감소했고, 그 이상의 고도에서는 평균풍속이 증가함

